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1 Introduction 

One of the widely used methodologies for describing the behavior of a structural system 
subjected to seismic excitation is response spectrum modal dynamic analysis. Several modal 
combination rules are proposed in the literature to combine the responses of individual modes 
in a response spectrum dynamic analysis. In particular, these modal combination rules are 
used to estimate the representative maximum value of a particular response of interest for 
design purposes. Furthermore, these combination rules also provide guidelines for combining 
the representative maximum values of the response obtained for each of the three orthogonal 
spatial components of an earthquake. This report mainly focuses on the implementation of 
different modal combination rules into GEMINI [I]. 

2 Combination of Modal Responses 

The most widely used combination rule for combining the modal responses of individual 
modes in a response spectrum analysis is the square root of the sum of the squares (SRSS) 
of the maximum values of the response of individual modes [a]. However, in the case of 
closely spaced modes, SRSS procedure significantly underestimates the true response [3, 41. 
Several modal combination rules are proposed in the literature to account for the effect of 



closely spaced modes in an unified format. In the following, a brief description of some of 
the widely used combination rules is presented. 

Let I = 1, 2, 3 represent the three orthogonal spatial components of an earthquake and 
i, j, k = 1, a- * N represent the individual modal response indices for N modes. Assume 
that the values of a particular response of interest are denoted by Rtj, where small index 
i (or j or Ic) is used for maximum values of individual modal responses and big index I 
(or J or K) is used for maximum values of the three orthogonal spatial components of an 
earthquake. 

2.1 Square Root of Sum of Squares (SRSS) 

According to this rule, the representative maximum value of a particular response of interest 
subjected to a single independent spatial component of a three-component earthquake is 
obtained by taking the square root of the sum of the squares of corresponding maximum 
values of the individual modal responses. Mathematically, this can be expressed as 

RI = gRii ‘ifI= 1,2,3 (1) 
i=l 

2.2 Absolute Sum (ABSSUM) 

Using this rule, the representative maximum of a single independent spatial component 
is obtained by considering the sum of absolute maximum values of the individual modal 
responses. Thus, 

RI = &Rri, VI= 1,2,3 (2) 
i=l 

It should be noted that ABSSUM gives the maximum possible value for a particular response 
of interest. 

2.3 Double Sum (DBLSUM) 

As mentioned earlier, in the special case of modes that are in-phase, the maximum values 
of individual modes occur simultaneously and hence their combined effect is obtained by 
adding the individual modal responses algebraically. Further, the estimate of the maximum 
value obtained by SRSS rule significantly underestimates the combined response in the case 
of modes whose response is correlated. In general, the modal responses become correlated 
under two circumstances: (a) when the corresponding frequencies are close; and (b) when the 
modal responses are partially or totally in-phase with the input motion, irrespective of the 
closeness of the modal frequencies. The effect of closely spaced modes can be incorporated 
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by assuming that each of the separate modes are correlated to one another such that the 
representative maximum response can be expressed in the following form 

R; = 5 R;k + 2 fl: c cij RIi R, 
k=l i=l l<j<i 

(3) 

and Eij denotes the modal correlation coeficient. The effect of phase correlation with the 
input motion is taken into account through the rigid response coefficients (ai) as discussed in 
Section 2.3.4. In the following, some of the most widely used modal correlation coefficients 
in the double sum rule (Eq. [3]) are presented. 

2.3.1 Rosenblueth and Elorduy’s Coefficient 

Based on Rosenblueth and Elorduy’s work [5], the modal correlation coefficient can be written 
as 

in which wi and tij are the circular frequencies of ith and jth modes in radians per second; 
wgi and WDj are the corresponding damped frequencies such that 

WDi = (1 -c,“)i wi 

WDj = (1-c;); Wj (5) 

and [i and 5; are the equivalent damping ratios given by 

where s is the effective duration. Substituting Eqs. [5, 61 into Eq. [4], we have 

2 )I 
-1 

Eij = 
WDi - WDj 

CiWi + <jWj + f 

(6) 

(7) 

The procedure for evaluating the duration variable s in Eq. [7] presents a formidable task. 
To avoid the estimation of this effective duration s, Gupta and Corder0 [6] modified the Eq. 
[7]. (, 



2.3.2 Gupta and Cordero’s Coefficient 

According to Gupta and Corder0 [6], the modal correlation coefficient can be expressed as 

2 )I 
-1 

Eij = 
WDi - WDj 

[iWi + <jWj + Gj 
(8) 

where the coefficient cij is given by 

Cij = (0.16 - O-5 [ij) (I.4 - 1w.f - W;[) 2 0 (9) 

in which <ij is the average damping value. Further, in their later work, Gupta and Corder0 
[7] modified the above Eq. [8] as 

2 )I 
-1 

Eij = 
WDi - WDj 

<@i + cj Wj + Cij 
(10) 

In the remaining of this report, Eq. [lo] is denoted by modified Gupta and Corder0 corre- 
lation coefficient. 

2.3.3 Der Kiureghian’s Coefficient 

The modal correlation coefficient in this case is expressed as 

in which 

Wij = 
wi +q. 

cij = G$L;’ 
Aw,j = wi - wi 
A& = Ci - Cj (12) 

The double sum equation in which Der Kiureghian’s [8] expression is used is also called 
complete quadratic combination (CQC). 

2.3.4 High Frequency Modes: Rigid Response 

At high frequencies, the spectral acceleration becomes equal to the maximum ground accel- 
eration, which is also called the zero period acceleration (ZPA). The minimum frequency at 
which the spectral acceleration becomes approximately equal to the ZPA, and remains equal 
to the ZPA is called the ZPA frequency or rigid frequency (f’ or w’). At frequencies higher 
than the rigid frequency, the responses are in-phase (or perfectly correlated) with each other. 
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On the other hand, let the correlation between the modal response and the input acceleration 
be denoted as rigid response coefficient (ai) such that at frequencies equal to higher than 
the rigid frequency the response is rigid and the correlation is unity. The reader is referred 
to Gupta [9] for a detailed discussion on the rigid response of high frequency modes. 

Based on the above discussion, it is possible to divide a modal response Rli at a frequency 
fi < f’, into two parts: the rigid part RFi and the damped periodic part R~i. Hence 

Rli = aiRri; RTi = (1 - C# Rli (13) 

such that R;i = (R;J2 + (RTi)2. M oreover, since the rigid parts are all perfectly correlated, 
we have 

R;=CRTi (14 
i 

and the damped periodic parts are combined using the standard double sum equation 

(Ry)2 = C(Ryi)2 + 2 C Ctij RTi R~i (15) 
i i j<i 

Finally, the total response can be obtained as 

R; = (R;)2 + (R;)2 (16) 

Substituting Eqs. [13, 14, 151 into Eq. [16] and simplifying the result, we have 

R; = 2 Rik + 2 2 C Eij Rli R, 
k=l i=l l<j<i - 

where 

-  

Eij 
= Qi O!j + [(l - d!:) (1 - CXT)]’ Cij 

(17) 

and Cij represents the modified modal correlation coefficient to incorporate the rigid response 
effect. The rigid response coefficients (ai or aj) can be evaluated using 

Qi = p&. 
1’ 

and 

f1 = * Hz; 

.fl 5 fi 5 f2 

f2 = w Hz 

(1% 

PO> 
in which ~~~~~ and Svmaz denote the maximum spectral acceleration and velocity respec- 
tively. 
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REMARK 1: At this point, it should also be noted that ASCE Standard [lo] suggests a fur- 
ther simplification for evaluating the rigid response coefficients. Based on this simplification, 

Qli = 1.0 if f1 2 f and f2 2 f (21) 

else pi = 0 

2.3.5 Residual Rigid Response 

In general, the significant response of a structure can be obtained by just considering the 
first few modes and neglecting the contribution from the high frequency modes. However, 
it is not entirely clear how many modes should be included in the analysis to obtain an 
accurate representation of the true behavior of the structure. Subsequently, at least in some 
instances, it is possible to obtain unacceptable results if the influence of the high frequency 
modes is not considered. One way to include the inertia effect of modes having frequencies 
greater than the rigid frequency is through the missing muss term which yields the residual 
rigid response [9, lo]. 

The equation of motion for an N-degree of freedom system can be expressed as 

: Mti + Cti + KU = -MU& (22) 

where M, C and K are mass, damping and stiffness matrices, respectively; U is the relative 
displacement vector; Ub is the static displacement vector when the base of the structure dis- 
places by unity in the direction of the earthquake; ii, is the earthquake ground acceleration. 
Using the modal superposition method, we have 

Substituting Eq. [23] into Eq. [22], we get 

which gives the response Ui in the ith mode of vibration. Let us assume that there are n 
modes having frequencies less than the rigid frequency f ‘. Also, denote the response in these 
n modes by U’ and the response in the remaining modes by Uo, such that 

U’ = eui U(J = 5 Ui u=u’+uo 
i=l i=n+l 

(25) 
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Using Eqs. [22, 24, 251, it is possible to obtain 

Moo + Cti, + KU0 = -MU&, (26) 

and 
n 

UbO = Ub - c w& (27) 
i=l 

As the response of the structure in modes having frequencies greater than the rigid frequency 
is pseudo-static, we have 

KU0 = -MUboG, =+ U. = -K-‘MUbofi, (28) 

Hence the maximum residual rigid response is obtained as 

uo max = -K-lMUbo(ZPA) (29) 

2.4 Grouping Method 

Using this combination rule, closely spaced modes are divided into groups that include all 
modes having frequencies between the lowest frequency in the group and a frequency 10 
% higher. The representative maximum value of a group is obtained by taking the sum of 
the absolute values of the corresponding maximum individual modal values of that group. 
Further, the representative maximum value of a particular response is obtained by taking 
the square root of the sum of the squares of the corresponding representative maximums of 
all the groups. Mathematically, this can be expressed as follows: 

Assume that the modes can be grouped into p individual groups such that no one fre- 
quency is in more than one group. Also, assuming that 1 and m denote the lowest and highest 
frequency modes in the qth group, the representative maximum of each group is obtained as 

Using the SRSS rule for combining the group responses, we have 

Rf = 
k=l; kq’P q=l 

Substituting Eq. [30] into Eq. [31] and simplifying the result, 

Rf = eR;k+f:gF/RIqi Rlqj/ i#.i 
k=l q=l i=l j=l 

(32) 
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which can be re casted into the following double sum rule form as 

where Sij can be represented in a sparse matrix format. Precisely, it is this sparse matrix 
format of iZij that is responsible for representing the double sum rule and grouping method in 
an unified framework. In the following, the above procedure is illustrated using an example. 

Consider a total number of seven frequencies (N = 7) grouped into three groups (p = 3) 
such that 

g1 = W,3); 92 = {4,5); 93 = {6,7) 

The corresponding Zij sparse matrix for the above grouping can be represented as 

y 11 0 0 0 oT 
\10000 

\oooo 
[&j] = \ 100 

sym\OO 
\ 1 

\- 

2.5 Ten Percent Method 

Using this combination rule, the representative maximum can be obtained as 

Ri=ihk+2 yxjRIi RIjI 
k=l i j>i 

(34) 

where the second summation is performed over all i and j modes whose frequencies are closely 
spaced to each other, i.e., two modes with frequencies are tii and wj are closely spaced, if 

Wj - Wi 
5 0.1 and 

Wi 
l<i<jlN 

Similar to Eq. [32], Eq. [34] can also be re casted into double sum form as 

Rf = FRyk-I-2 CClcijRliRIjj 
k=l i j>i 

(36) 
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Once again, let us consider a total of seven frequencies (N = 7). These seven frequencies 
can be grouped as 

91 = W,3h 92 = c&3); Q3 = (374); 94 = {4,5,6) 

The corresponding cij sparse matrix for the above grouping can be represented as 

[Gj] - - 

-\110000 
\10000 

\ 1000 
\llO 

sym\lO 
\ 0 

Thus, grouping method and ten percent method can be treated in an unified double sum 
rule form. 

‘* 2.e. : Combination of Spatial Components 

In the previous Sections 2.1-2.5, the modal combination rules for a single orthogonal com- 
ponent of an earthquake are presented. In the following, evaluation of the representative 
maximum response value from the three orthogonal individual spatial components is pre- 
sented. 

When responses from the three earthquake components are calculated separately, the 
combined earthquake response is obtained by using the square root of the sum of the squares 
of individual spatial component representative maximum responses, i.e., 

where R is any response of interest and RI is the representative maximum response in the 
Ith direction and is obtained by using any of the modal combination rules discussed through 
Sections 2.1-2.5. 

3 Some Remarks on Modal Combination Rules 

3.1 C&e 1: Residual rigid response as an additional mode 

Consider an N degree of freedom structure with a total number N modes. Let us assume 
that there are n modes having frequencies less than the rigid frequency f’. Also, let RIO 
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denote the residual rigid response due to the high frequency modes. As mentioned earlier, for 
modes with frequencies equal to or greater than the rigid frequency f’, the responses are in- 
phase with each other, i.e., the responses are perfectly correlated. Hence the representative 
maximum due to these modes is given by 

R;=Rro+~R;i 
i=l 

(38) 

Using Eqs. [3, 13, 15, 161, the representative maximum can be obtained as 

R; = (R;)2 + (R;)2 (39) 

= R;o + 2 RIO 2 Rl;i + 2 R~i + 2 2 C Cij RIi Rlj 
I 

(40) 
i=l i=l i=l l<j<i 

n+l n+l 

= C Rsi + 2 C C 6j RIG RIG 
3 

(41) 
i=l i=l l<j<i 

where (n + I)th mode is the residual rigid response mode with frequency equal to ZPA, i.e., 
0!,+1 = 1.0 ‘. 
REMARK 2: It should be noted that the above result is identical to the suggested procedure 
by ASCE Standard [lo] for including the residual rigid response, i.e., residual rigid response 
can be treated as an’additional mode having a frequency equal to the ZPA or cutoff frequency. 

3.2 Case 2: Response of m modes with frequencies fi 2 f’ 

Now, let us consider that there are m additional modes whose frequency is greater than the 
cutoff frequency. In such a case, 

CYi = 1.0 V i E (n -I 1, n + 2,. . . , n -k m) (42) 

and the modes are perfectly correlated, i.e., 

2ij = 1.0 Vi, j E {n+l,n+2;.-,n+m} (43) 

Using the double sum rule, the representative maximum response can be obtained as 

n+m+l n+m+l 
R; = C R3i +2 C C Gj RIi RIj (44 

i=l i=l l<j<i 1 
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where (n + m + l)th mode is the rigid response mode and Rl~~+~+l) = RIO. Substituting 
Eqs. [42, 431 into Eq. [44] an simplifying the result, we have d 

R; = Rise + 2 R1sO 2 R;i + 
i=l 

where 

2 Rpi + 2 2 C Sij Rli Rlj 
1 

(45) 
i=l i=l l<j<i 

ntm 
RI~O = RIO + C RIi (46) 

i=n+l 

REMARK 3: Based on the above derivation, it should be clear that the above result is 
identical to the procedure suggested by ASCE Standard [lo] for assigning the rigid response 
coefficients as 

Cyi = 0 if fi < f’ (47) 
=l if fi 2 f’ (48) 

and treating the m additional modes as a single mode whose representative maximum is 
obtained by simply summing the corresponding maximum values of m individual modes. 
Based on REMARK 2, it is clear that residual rigid response can also be treated as a mode 
whose frequency is equal to the ZPA or cutoff frequency. 

4 Numerical Example 

A five story plane frame with geometric and material properties as shown in Fig. [l] is 
subjected to a seismic loading obtained from El-Centro 1940 earthquake. The plane frame 
is idealized assuming that the mass of the entire story is located at the center of the slab 
using a lumped spring-mass idealization. The mass and stiffness properties of the idealized 
structure are shown in Fig. [l]. The input data deck for an eigenvalue solution and response 
spectrum analysis of the problem under consideration is given in Appendix I. The output 
obtained through various modal combination rules with or without residual rigid responses 
is given in Appendix II. The modified input documentation for response spectrum analysis 
using GEMINI is given in Appendix III. The reader is also referred to the previous GEMINI 
[l] documentations for better understanding of the input variables. 

5 Summary 

This report presents the implementation of several modal combination rules for response 
spectrum dynamic analysis using GEMINI. The modal combination rules include the widely 
used square root of the sum of the squares (SRSS) rule, absolute sum rule, double sum 
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rule, NRC double sum rule, grouping method and ten percent methods. The above rules 
act in conjunction with the rigid response coefficients that are used to model the effect of 
phase correlation with the input motion, and the residual rigid response used to account 
for the missing mass due to high frequency modes. These rules are implemented in an 
unified framework such that grouping method and ten percent method can be treated as 
special formats of double sum rule. A numerical example is presented to demonstrate the 
capabilities of various modal combination rules. 

259.07 Ibm 

K = 31540 lb/in 

Figure 1: Geometry of plane frame 
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APPENDIX I: Input Deck for Numerical Example 

Probleml: Part I --plane frame example - eigenvalue solution 
7 I 
la 1 
2 
3 
4 
5 
6 
7 I 
2 5 

1 
1 

0 41 
I 1 1 I 1 
1 I 1 I I 
I 1 1 I. I 
11111 
11111 
11111 
11111 
10 1 

4541760 0.3 
I 

0.0 0.0 0.0 
144.0 0.0 0.0 
288.0 0.0 0.0 
432.0 0.0 0.0 
576.0 0.0 0.0 
720.0 0.0 0.0 
432.0 10.0 0.0 

1.0 1.0 1.0 

112 7 1.1 
2 2 3 7 11 
3 3 4 7 11 
4 4 5 7 11 
5 5 6 7 1.1 
5 
2 0 259.07 
3 0 259.07 
4 0 259.07 
5 0 259.07 
6 0 259.07 

-1 
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Probleml: Part 2 --plane frame earthquake response spectra in-lb-set 
7 1 4 -3 

1 1110 14 
2 0 1 1 4.7 

0.05 
0.05 

el centro 1940 camp n-s (g) 
I. 

0.1 
0.12 
0.13 

0.145 
0.2 

0.22 
0.25 

0.4 
0.6 

0.73 
0.8 

0.93 
1.15 

1.3 
1.4 
1.6 
1.9 
2.6 
3.1 
3.5 
4.7 

1.0 21 
0.6 
0.7 

1.35 
1.45 

1.2 
1.2 
1.3 
0.9 
0.9 
0.6 
0.7 

0.72 
0.4 

0.35 
0.27 
0.29 
0.21 
0.23 

0.2 
0.1 

0.065 

386.0 

501.8 
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APPENDIX II: Output 

SRSS : 

beam load axial 
no. case rl 

1 1 9.9189E+O4 
2 1 8.7247E+04 
3 1 7.5017E+04 
4 1 6.1504E+04 
5 1 4.0125E+04 

DOUBLE SUM (Gupta and Co) iclose = 1 or 0 => same in this case 

beam load 
no. case 

axial 
rl 

1 1 9.9843E+04 
2 1 8.7370E+04 
3 1 7.486OE+O4 
4 1 6.1043E+04 
5 1 3.9222E+04 

DOUBLE SUM (Rosenblueth and Co) dureff = 4.7 set 

beam load axial 
no. case rl 

1 1 l.O175E+05 
2 1 8.7607E+04 
3 1 7.4053E+04 
4 1 5.9579E+04 
5 1 3.7553E+04 
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DOUBLE SUM (cqc) 

beam load axial 
no. case rl 

1 1 9.984lE+04 
2 1 8.737OE+O4 
3 1 7.486OE+O4 
4 1 6.1044E+04 
5 1 3.9225E+04 

DOUBLE SUM (NRC) (Gupta and Co) iclose = 1 or 0 => same in this case 

beam load axial 
no. case rl 

1 1 9.9843E+O4 
2 1 8.7679E+04 
3 1 7.5590E+04 
4 1 6.2200E+04 
5 1 4.1388E+04 

DOUBLE SUM (NRC) (Rosenblueth and Co) dureff = 4.7 set 

beam load axial 
no. case rl 

1 1 l.O175E+O5 
2 1 8.8562E+04 
3 1 7.701lE+04 
4 1 6.3970E+04 
5 1 4.3560E+04 

DOUBLE SUM (NRC) (CQC) 
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beam load axial 
no. case rl 

1 1 9.984lE+04 
2 1 8.7678E+04 
3 1 7.5588E+04 
4 1 6.2199Ec04 
5 1 4.1385E+04 

GROUP METHOD (same as SRSS in this example) 

beam load axial 
no. case rl 

1 1 9.9189E+04 
2 1 8.7247E+04 
3 1 7.5017E+O4 
4 1 6.1504E+O4 
5 1 4.0125E+04 

TEN PERCENT METHOD (same as SRSS in this example) 

beam load 
no. case 

1 1 
2 1 
3 1 
4 1 
5 1 

ABSSUM 

axial 
rl 

9.9189E+O4 
8.7247E+04 
7.5017E+04 
6.1504E+04 
4.0125E+04 

beam load axial 
no. case rl 
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1 1 1.4007E+05 
2 1 l.l310E+05 
3 1 l.O812E+O5 
4 1 9.7096E+O4 
5 1 7.4865E+04 

Rigid Response Coeffcients 

------------------------------------------------------------------------------- ------------------------------------------------------------------------------- 

DOUBLE SUM (Gupta and Co): icorr=O,iclose=l,irrc=i 

beam load axial 
no. case rl 

1 1 9.9844E+O4 
2 1 8.7376E+04 
3 1 7.4859E+04 
4 1 6.1039E+04 
5 1 3.9215E+O4 

DOUBLE SUM (Rosenblueth and Co) icorr=l,irrc=l 

beam load axial 
no. case rl 

1 1 l.O175E+05 
2 1 8.7612E+04 
3 1 7.4052E+O4 
4 + 1 5.9576E+04 
5 1 3.7549E+04 
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DOUBLE SUM (CQC): icorr=2,irrc=l 

beam load axial 
no. case rl 

1 1 9.9843E+04 
2 1 8.7376E+04 
3 1 7.4859E+04 
4 1 6.1040E+04 
5 1 3.9217E+O4 

DOUBLE SUM (Gupta and Co): icorr=O,iclose=l,irrc=2 

beam load axial 
no. case rl 

1 1 l.O006E+05 . 

2 1 8.8417E+04 
3 1 7.3991E+O4 
4 1 6.1119E+04 
5 1 3.7826E+O4 

DOUBLE SUM (Rosenblueth and Co) icorr=l,irrc=2 

beam load axial 
no. case rl 

1 1 l.O136E+05 
2 1 8.8838E+04 
3 1 7.3183E+04 
4 1 5.983lE+04 
5 1 3.6998E+04 

DOUBLE SUM (CQC): icorr=2,irrc=2 
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beam load axial 
no. case rl 

1 1 l.O006E+05 
2 1 8.8417E+O4 
3 1 7.399lE+04 
4 1 6.1119E+04 
5 1 3.7827E+04 

DOUBLE SUM (NRC) (Gupta and Co): icorr=O,iclose=l,irrc=l 

beam load axial 
no. case rl 

1 1 9.9844E+04 
2 1 8.7683E+04 
3 1 7.5593E+04 
4 1 6.2204E+04 
5 1 4.1398E+04 

DOUBLE SUM (NRC) (Rosenblueth and Co) icorr=l,irrc=l 

beam load axial 
no. case rl 

1 1 l.O175E+O5 
2 1 8.8563E+04 
3 1 7.7012E+04 
4 1 6.3970E+04 
5 1 4.3562E+04 

DOUBLE SUM (NRC) (CQC): icorr=2,irrc=l 

beam load axial 
no. case rl 
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I 1 9.9843E+04 
2 1 8.7682E+04 
3 1 7.5592E+04 
4 1 6.2203E+04 
5 1 4.1395E+04 

DOUBLE SUM (NRC) (Gupta a.nd Co): icorr=O,iclose=l,irrc=2 

beam load axial 
no. case rl 

1 1 l.O006E+05 
2 1 8.8417E+04 
3 1 7.6207E+04 
4 1 6.2616E+04 
5 1 4.3476E+04 

DOUBLE SUM (NRC) (Rosenblueth and Co) icorr=l,irrc=2 

beam load axial 
no. case rl 

1 1 l.O136E+05 
2 1 8.8838E+04 
3 1 7.6984E+O4 
4 1 6.3848E+04 
5 1 4.4183E+O4 

DOUBLE SUM (NRC) (CQC): icorr=2,irrc=2 

beam load axial 
no. case rl 

1 1 l.O006E+05 
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2 1 8.8417E+04 
3 1 7.6207E+04 
4 1 6.2616E+04 
5 1 4.3476E+04 

-------------_----------------------------------------------------------------- -----------------_------------------------------------------------------------- 

Residual Rigid Response 

------------------------------------------------------------------------------- ------------------------------------------------------------------------------- 

DOUBLE SUM (Gupta and Co): icorr=0,iclose=l,irrc=l,irrr=l 

beam load axial 
no. case rl 

1 1 9.9802E+04 
2 1 8.7225E+04 
3 1 7.4795E+04 
4 1 6.1115E+O4 
5 1 3.9285E+04 

DOUBLE SUM (Rosenblueth and Co): icorr=l,irrc=l,irrr=l 

beam load axial 
no. case rl 

1 1 l.O168E+05 
2 1 8.7438E+04 
3 1 7.4001E+04 
4 1 5.970lE+04 
5 1 3.7646E+04 

DOUBLE SUM (CQC): icorr=2,irrc=l,irrr=l 
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beam load axial 
no. case rl 

1 1 9.9801E+04 
2 1 8.7225E+04 
3 1 7.4795E+04 
4 1 6.1116E+04 
5 1 3.9287E+04 

GROUP METHOD: irrr=l (same results for TEN PERCENT and SRSS in this example) 

beam load axial 
no. case rl 

1 1 9.919OE+O4 
2 1 8.7255E+O4 
3 1 7.5033E+O4 
4 1 6.152OE+O4 
5 1 4.0134E+04 
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APPENDIX III: Response Spectrum Analysis: Documentation of Input Deck 

In the following, the new additions to the GEMINI input deck due to the implementation 
of various modal combination rules are listed. The reader is referred to original GEMINI 
manual [l] for a detailed information on the input deck control cards. 

I. Control Card (refer to Gemini Manual) 

Columns Quantity Format 
-----------_------------------------------------------------------------------- ------------------------------------------------------------------------------- 

56-60 Modal Combination Rule (NABS) 15 
EQ.0; SRSS Rule 
EQ.1; Grouping Method 
EQ.2; Ten Percent Method 
EQ.3; Double Sum Rule (without sign => NRC) 
EQ.4; Double Sum Rule (with sign) 

> 4; Absolute Sum Rule 

NOTES: If 1 5 NABS < 4, then the information on “la. Control Card” is needed. 

la. Control Card (New addition) 

l-5 

6-10 

Modal Correlation Coefficient (ICORR) 
EQ.O; Gupta and Corder0 
EQ.1; Rosenblueth and Elorduy 
EQ.2; Der Kiureghian (CQC) 
EQ.99; Read in Coefficients 

NCSU Modal Closeness Factor (ICLOSE) 

15 

15 
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Ii-15 

16-20 

21-30 

15 

EQ.O; Do not include 
EQ.1; Include 

Rigid Response Coefficients (IRRC) 
EQ.O; Do not include 
EQ.1; Gupta and Chen 
EQ.2; ASCE 4-86 
EQ.99; Read in Coefficients 

Residual Rigid Response (IRRR) 15 
EQ.O; Do not include 
EQ.1; Include 

Husid.or Husid-like effective duration (DUREFF) FlO.0 

NOTES: After inputting the data on “4. Spectrum Cards” (refer to Gemini Manual), 
input the following information on ” 5. Rigid Response Card” (new addition), if (IRRC # 0) 
or (IRRR = 1). 

5. Rigid Response Cards 

a. Control Card 

Columns Quantity Format 
------------------------------------------------------------------------------- ------------------------------------------------------------------------------- 

l-5 Cutoff Frequency Spectrum Number (IFR(l)) 
X-direction 

15 

6-10 

Ii-15 

Cutoff Frequency Spectrum Number (IFR(2)) 
Y-direction 

Cutoff Frequency Spectrum Number (IFR(3)) 
Z-direction 

15 

15 

b. Control Card 
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Columns Quantity Format 
___-------_-------------------------------------------------------------------- ___---------------------------------------------------------------------------- 

l-10 Cutoff Frequency Hz (Fr(1)) 
X-direction (Default = 33 Hz) 

F1O.O 

Ii-20 Cutoff Frequency Hz (Fr(2)) 
Y-direction (Default = 33 Hz) 

FlO.0 

21-30 Cutoff Frequency Hz (Fr(3)) 
Z-direction (Default = 33 Hz) 

F1O.O 

c. Control Card 

Columns Quantity Format 
___----~~~---~~-----~-----~~-----------------------~~-------------~~~---~~~---- ___----~~~---~~~----~-----~------------------~-----~~-------------------~~~---- 

l-5 First Rigid Response Frequency (IFI( 
Spectrum Number: X-direction (Default = I) 

15 

6-10 F\irst Rigid Response Frequency (IFl(2)) 
Spectrum Number: Y-direction (Default = I) 

15 

Ii-15 First Rigid Response Frequency (IFl(3)) 
Spectrum Number: Z-direction (Default = I) 

15 

d. Control Card 

Columns Quantity Format 
___---------------------------------------------------------------------------- ___---------------------------------------------------------------------------- 

l-10 First Rigid Response Frequency Hz (Fl(1)) 
X-direction 

F1O.O 
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Ii-20 

21-30 

First Rigid Response Frequency Hz (Fl(2)) FlO.0 
Y-direction 

First Rigid Response Frequency Hz @ l(3)) FlO.0 
Z-direction 

e. Control Card 

Columns Quantity Format 
=============================================================================== 

l-10 Zero Period Acceleration 
X-direction 

(ZPA(l)) FlO.0 

Ii-20 Zero Period Acceleration 
Y-direction 

(ZPA(2)) FlO.0 

21-30 Zero Period Acceleration 
Z-direction 

@A(3)) FlO.0 
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